Increasing dose of intravenous human adipose-derived stem cells improves the pancreatic function of diabetic mice

Loan Thi Tung Dang, Anh Nguyen Tu Bui, Cong Le Thanh Nguyen, Nhat Chau Truong, Anh Thi Van Bui, Ngoc Phan Kim, Kiet Dinh Truong, Phuc Van Pham

Laboratory of Stem cell Research and Application, B2-3 Linh Trung Campus, University of Science, VNUHCMC, Ho Chi Minh, Ho Chi Minh 088, Vietnam

Abstract

Mesenchymal stem cell transplantation is a novel treatment for diabetes mellitus, especially type 1 diabetes. Many publications have proved the effect of MSC therapy on reducing blood glucose and improving insulin production in type 1 diabetic animal as well as in clinic trials. However, there is no conclusion that how many cells are effective for diabetes. Thus, this study has investigated that different adipose-derived MSC doses affected glucose metabolism in diabetic mice. STZ-induced diabetic mice were intravenously transfused with human MSCs with dose either 1x10^6 (treated group A) or 2x10^6 cells/mouse (treated group B). Both treated and untreated mice were monitored the blood glucose levels, glucose and insulin tolerance test, pancreatic structure change and insulin production every week until 56 days after transplantation. The results showed that the higher dose of MSC could reduce death rate (66% vs. 0% death in group A vs. group B after 56 days of treatment, respectively) and remarkably lower blood glucose levels while the mice treated with 2x10^6 cells/dose remaining hyperglycemia. Moreover, the glucose tolerance and insulin tolerance as well as insulin production were improved in group B at 28 days after transplantation. The histochemical imaging further demonstrated the decrease of inflammatory cells in the islets and the restoration of pancreatic structures in higher-dose-MSCs-treated mice. Thus, the dose 2x10^6 cells of MSCs may be an effective strategy for diabetes mellitus concerning hyperglycemia, impaired glucose metabolism and islet destruction.

Keywords

Diabetes, streptozotocin, dose, stem cell

Funding

This research was funded by Ministry of Science and Technology via project Grant No. DTDL.2012-G/23
References

