Biomedical Research and Therapy 2018-03-18T14:56:10+07:00 Lili Hami Open Journal Systems Study of the association of Trp64Arg mutation of beta three adrenergic receptor with obesity in Saudi population 2018-03-18T14:56:10+07:00 Aishah Alamrani Mohammed AlZogaibi Mouaadh ABDELKARIM <p><strong>Introduction</strong>: Beta three adrenergic receptor (ADRB3) is an adrenergic receptor that induces activation of adenylate cyclase located mainly in adipose tissue and is involved in the thermogenesis of brown fat tissue and in the regulation of lipolysis. Agonists of ADRB3 are found to induce the thermogenesis process of human brown fat tissue and thus believed to be excellent anti-obesity targets. The most studied single nucleotide polymorphism (SNP) of ADRB3 is rs4994. Inconsistent findings have been found in earlier studies about the association of rs4994 polymorphisms with obesity among different populations. The association of ADRB3/rs4994 polymorphism with obesity among the Saudi population is unknown. This study aimed to investigate the association of ADRB3/rs4994 polymorphism with obesity, blood lipids and blood pressure in the Saudi population.</p> <p><strong>Method</strong>: This study was a case control study involving 88 obese healthy volunteers and 84 non-obese (controls) volunteers recruited from the King Khaled University Hospital (KKUH), Riyadh City, Saudi Arabia. Using KASPTM (Competitive Allele-Specific PCR) the rs4994 genotype for each participant was determined. The frequency, distribution, and association of each genotype with body mass index (BMI) and lipid profile were calculated.</p> <p><strong>Results</strong>: The distribution of CC, TT and CT genotypes in the study population was 0.37, 0.06 and 0.56, respectively. The heterozygote CT genotype was associated with a reduced risk of obesity (odds ratio (OR)=0.4398, 95%CI=0.2338&nbsp;to&nbsp;0.8277, P-value=0.010). It was more frequent in the non-obese participants compared to the obese participants (67.9% vs. 44.3%, respectively). Moreover, participants with the CT genotype had a significantly lower BMI (P=0.004). In contrast, the CC genotype was associated with an increased risk of obesity (OR=2.5, 95%CI=1.3467&nbsp;to&nbsp;4.8758, P-value=0.004). The frequency of the CC genotype was higher in obese participants compared to the non-obese ones (46.6% vs. 28.6%, respectively). Participants with the CC genotype demonstrated a significantly higher BMI than participants with the CT or TT genotypes (Q= 4.5, P=0.004). The TT genotype had no significant effects on the participants’ BMI (OR=2.9, 95%CI=0.7563&nbsp;to&nbsp;11.5759, P value=0.11), and it was higher in obese compared to non-obese participants (9.1% vs. 3.6%, respectively). No significant effect of ADRB3/rs4994 polymorphism on blood lipid profile or blood pressure was observed.</p> <p><strong>Conclusion</strong>: The findings of this study suggested that the heterozygote CT genotype of the ADRB3/rs4994 polymorphism is associated with a reduced risk of obesity among the Saudi population. In the future, larger scale studies are required to further confirm these observations.</p> 2018-03-09T00:00:00+07:00 ##submission.copyrightStatement## Hepatoprotective effect of simvastatin in mice with DMBA-induced breast cancer: Histopathological, biochemical and antioxidant status evaluation 2018-03-18T14:56:08+07:00 Mahboobeh Ashrafi Behnaz Karimi Maryam Sabahi Tahoora Shomali <p><strong>Introduction</strong>: This study evaluates the effects of simvastatin on the liver, in a mouse model of DMBA-induced breast cancer, with regards to histopathological, biochemical and antioxidant features.</p> <p><strong>Methods</strong>: Mice were randomly divided into two groups: A (control group) and B (mammary tumor group); the latter group received DMBA (50 mg/kg) by oral gavage once a week for 4 consecutive weeks. Animals positive for breast cancer tumors were randomly divided into 3 subgroups: 1) no treatment group (D1), 2) mice that received simvastatin (80 mg/kg) per os (P.O.) daily for 4 consecutive weeks (D2), and 3) mice that received tamoxifen (50 mg/kg) P.O. daily for 4 consecutive weeks (D3).</p> <p><strong>Results</strong>: Administration of simvastatin to D2 mice resulted in significantly higher superoxide dismutase (SOD) activity as well as glutathione peroxidase (GPx) activity and total antioxidant capacity (TAC), and accompanied by reduced malondialdehyde (MDA) content in liver as compared to D1 group. Tamoxifen significantly increased liver glutathione (GSH) content as compared to D1 mice. Moreover, MDA levels in liver of mice treated with tamoxifen were significantly lower than in the D1 group. Mice in the D1 group showed significantly increased levels of alkaline phosphatase (ALP), aspartate transaminase (AST), and gamma-glutamyl transferase (GGT) in liver tissues; these levels were significantly reduced by simvastatin administration. Moreover, tamoxifen decreased ALP and AST activities. Histopathological examination of liver sections from mice in the D1 group showed severe deteriorative changes. The extent and severity of changes in D2 and D3 groups were almost the same and milder than D1 group.</p> <p><strong>Conclusion</strong>: In conclusion, simvastatin appears to have a hepatoprotective role in mice with DMBA-induced breast cancer, due partly to its antioxidant properties.</p> <p>&nbsp;</p> 2018-03-13T13:49:01+07:00 ##submission.copyrightStatement##